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1 Summary

Human-made underwater noise has the potential to cause behavioral distur-
bance for cetaceans. Noise-making activities include those related to offshore
energy (e.g. windfarm (de-)construction or operation), military sonar exer-
cises or seismic explorations (e.g Evans 1996; Scott–Hayward et al. 2014b;
Parsons 2017). Response to disturbance can include animals leaving the gen-
eral area, redistribution of animals within the area or changes in behavior or
vocalization behavior (including changes in cue production rate, where cue
refers to any sound that the animals produce with some regularity, such as
calls, clicks or whistles) (e.g. Southall et al. 2016; Parsons 2017). While
it is often not possible to distinguish between these responses from passive
acoustic monitoring (PAM) data, in particular when using sparse arrays of
acoustic sensors (e.g. Harris et al. 2018), all of these reactions may lead to a
change in the rate at which we detect cues at the PAM stations.
In this study, we focus on statistical analysis methods for detecting a change
in cue detection rate caused by a potential disturbance, using PAM data from
single acoustic sensors or sparse arrays.
We first review the type of data generated from PAM before considering
statistical methods for detecting association between detections of marine
mammal vocalizations and detections of anthropogenic noise. We focus on
regression modeling approaches (generalized additive models (GAMs) and
generalized estimating equations (GEEs) in particular) and highlight some of
the challenges for fitting these to time series data. These include collinearity
and concurvity in covariates, overdispersion, correlation in consecutive ob-
servations, model selection and fitting meaningful smooths to covariates with
missing data. The latter involves a novel method for fitting factor-smooth
interactions.
We present a case study analysis of beaked whale (Ziphius cavirostris) click
detections made from PAM recordings in areas with concurrent military sonar
exercises and apply three different modeling tools for fitting GAMs which
each employ different methods for fitting smooth functions and for dealing
with correlation as well as use different model selection criteria. Function
mgcv:bam uses penalized regression splines, is limited to an AR1 correla-
tion structure and GCV scores for model selection (Wood et al. 2016). Func-
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tion MRSea:gamMRSea fits pure regression splines with optimal knot allo-
cation and robust standard errors and uses 10-fold cross validation for model
selection (Scott–Hayward et al. 2014a). The geepack:geeglm function
(Højsgaard et al. 2005) allows adding pure regression splines manually and
choosing among a variety of options for the correlation structure (and allows
determining which provides a better fit) and uses QIC for model selection
(Cui and Qian 2007).
We fitted each of the three model options to counts of beaked whale detec-
tions in almost 500,000 1-min segments and tested a variety of sonar-related
and non-anthropogenic covariates. We developed a new approach for fitting
factor-smooth interactions for covariates with missing data whereby for a
given level of the factor covariate, the corresponding smooth is only fitted
to the range of covariate values observed for this level. This method was
applied to the sonar-related covariate maxRLpp (maximum peak-to-peak re-
ceived level at the recording device) which was either 0 if no sonar was de-
tected or took values of ≥ 100 dB if sonar was detected – due to the nature
of the detection algorithm which only logged a detection of a sonar ping if
the received level was ≥ 100 dB.
The covariate composition of the preferred model differed for the bam ap-
proach highlighting the importance of carefully choosing the modeling ap-
proach, correlation structure and model selection criteria. However, which of
these modeling approaches is the best to correctly identify the presence (or
absence) of an effect of a disturbance on the vocalization rate given it had an
effect (given it did not have an effect) could not be determined during this
study. This would require a simulation study.

2 Introduction

Human-made underwater noise has the potential to cause behavioral dis-
turbance for cetaceans. Noise-making activities include those related to
(e.g. windfarm (de-)construction or operation), military sonar exercises or
seismic explorations (e.g Evans 1996; Scott–Hayward et al. 2014b; Parsons
2017). As these activities become increasingly widespread throughout the
oceans, it is important to understand and monitor the effects they have on
the cetaceans inhabiting the areas where these activities take place. The type
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of potential disturbance we focus on here is mid-frequency active (MFA) sonar
emitted during at-sea military exercises; however, our methods are applicable
to other types of disturbances as well.
Response to disturbance can include animals leaving the general area, redis-
tribution of animals within the area or changes in behavior or vocalization
behavior (including changes in cue production rate, where cue refers to any
sound that the animals produce with some regularity, such as calls, clicks or
whistles) (e.g. Southall et al. 2016; Parsons 2017). While it is often not pos-
sible to distinguish between these responses from passive acoustic monitoring
(PAM) data, in particular when using sparse arrays of acoustic sensors (e.g.
Harris et al. 2018), all of these reactions may lead to a change in the rate
at which we detect cues at the PAM stations. Further factors that affect cue
detection rate are distance of the animal from the source and their orienta-
tion (for directional signals, e.g. beaked whales Marques et al. (2009)), level
of noise which can mask call detection and false positive rate.
In this study, we focus on statistical analysis methods for detecting a change
in cue detection rate caused by a potential disturbance, using PAM data from
single acoustic sensors or sparse arrays where, for the latter case, no match-
ing of detections was undertaken between sensors recording simultaneously.
Instead, we only consider detection data, i.e. detections made either via a
manual or automated detection methods (e.g. Oedekoven et al. 2022) which
did not undergo any further processing such as identifying buzzes among the
detected clicks (e.g. Pirotta et al. 2015) or bearings or ranges estimated.
No detection probability is estimated, e.g. via distance sampling methods or
sound propagation (e.g. Buckland et al. 2015; Hildebrand et al. 2015) which
might have been able to account for some changes in detection rate due to
increased noise levels. Further, we do not consider distance of the source of
disturbance or the animal producing the cues (or its orientation) to the sound
source. Our particular focus is the statistical analysis methods that can be
used to detect such changes while correctly accounting for other features of
the PAM detection data.
The structure of this report is as follows. We first review the type of data
generated from PAM before considering statistical methods for detecting as-
sociation between detections of marine mammal vocalizations and detections
of anthropogenic noise. We focus on regression modeling approaches. We
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present a case study analysis of beaked whale click detections made from
PAM recordings in areas with concurrent military sonar exercises. This re-
port is designed to be of use to practitioners and as such we discuss modeling
tools available in the free software R, as well as presenting code snippets
where this helps with the exposition. The code and data used for the case
study are available as supplementary materials.

2.1 Why PAM data?

Besides generally being more cost effective than visual surveys, PAM also has
the benefit that cetaceans and noise can be monitored in parallel. Depend-
ing on the behavioral context, cetaceans produce various forms of sound at
somewhat regular rates, e.g. to communicate (Huijser et al. 2020; King et al.
2021) or forage (Pirotta et al. 2015). We refer to these sounds as cues, the
rate at which the animals produce these cues as the cue production rate and
the rate at which we detect the cues at the sensors as the cue detection rate.
Both the human-made noise and cetacean cues can be monitored simulta-
neously with the same recording devices (Jacobson et al. 2022) or using
different devices (e.g. Clausen et al. 2019). Therefore, it lends itself to use
PAM to investigate whether, e.g., a change in the cue detection rate can be
related to an onset or increase in the human-made noise. To this end, the
recordings need to be scanned for the specific cues and human-made signals
either manually or automatically (e.g. Oedekoven et al. 2022). Often, these
detections are summarized as counts or presence vs absence in discretized
time units of a pre-defined length (e.g. in 1-min segments) and related to
other metrics or covariates in statistical tests or models.
For example, Williamson et al. (2016) extracted harbor porpoise click de-
tections and compared daily means of varying metrics (detection positive
minutes per hour (DPMhr), per day (DPMd) or intervals (DPI) of 10-90
min length) against predicted density estimates from visual surveys using a
Spearman’s rank test. Brookes et al. (2013) also used a Spearman’s rank
test to compare harbour porpoise detection positive hours per day (DPHd),
DPMd and detection positive days (DPD) with densities predicted from habi-
tat models of animal distribution derived from other data sources. Melcon et
al. (2012) investigated hourly presences and absences of blue whale calls in
relation to military exercises and ship noise in a logistic regression. Brandt
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et al. (2011) analyzed DPMhr of harbor porpoises in a generalized additive
model (GAM) in relation to offshore energy. Thompson et al. (2014) also
used hourly presence and absences, but for bottlenose dolphins, and analysed
these with binomial generalized estimating equations (GEEs) to estimate the
probability of dolphin presence in relation to offshore energy activities.
We focus on fitting generalized linear and additive models (GLMs and GAMs,
Wood 2017) to data summarized in discretized time segments and discuss var-
ious options for fitting these models in in the statistical software R [@Rcore],
including the potential solutions to issues arising from analyzing time series
data. Furthermore, we present a new method for fitting smooth functions
to variables with missing data via a factor-smooth interaction term. Other
methods for analysis of these data are possible, and we return to this in the
Discussion.

3 Cue detection data generated from PAM recordings

3.1 Log of detections

A log of detected cetacean cues along with their start times can be generated
from PAM recordings using manual detection methods or automatic detectors
(e.g., Oedekoven et al. 2022). Manual detection entails observers scanning
the spectograms of the recordings and logging each detected vocalization
of the target type along with its time stamp. For automatic detection, a
computer algorithm scans the recordings and detects cues (e.g. Thode et
al. 2012; Lin et al. 2013). As these algorithms are generally not perfect, a
false positive rate needs to be estimated, e.g. by observers manually searching
for detections in representative sections of the spectograms and comparing
these with the automatic detections of the corresponding sections. For the
purposes of this report, we assume that false positives have either been dealt
with appropriately or have a negligible effect on the analysis.

3.2 Response variables generated from PAM data

GLMs and GAMs are types of regression models where the mean value of
a response variable (in our case a variable representing acoustic detections)
is related to a suite of covariates (also called explanatory variables, such
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as Julian date, presence of sonar, etc). This is similar for point process
models which model, e.g. temporally varying intensities of events as a function
of covariates (Dorazio 2017). For hidden Markov models (HMMs), state-
switching probabilities can be modeled as a function of covariates (Zucchini
et al. 2017). Depending on the modeling approach, the appropriate response
variable needs to be defined.
Based on the log of cue detections described above, various types of response
variables can be generated. These include the start times of the individual de-
tected cues, presence vs absence of detections or counts of detections within
discretized time segments, or waiting times between cue detections (Table
1). Out of these options, starting times and waiting times (e.g. Dähne et
al. 2013; Thompson et al. 2013) have the benefit that they do not require
discretizing the time series into somewhat arbitrary segments. However, fit-
ting point process models – which are applicable to start times – is often
not straightforward and limited to smaller data sets than those generated in
the PAM context Dorazio (2017). Similarly, HMMs (Zucchini et al. 2017)
are limited to smaller data sets. When modeling waiting times, the difficulty
exists in attributing covariate values on an appropriate time scale.
Hence, we focus on discretized time segments here. Common units for these
include 1-min, 10-min or 1-hr segments. They can be used either directly as
the unit for the response or as counts of detection positive segments per other,
larger time unit, e.g. DPM per 10 min (DPM10min, Nuuttila et al. 2017), per
hour (DPMhr) or day (DPMd, e.g., Benjamins et al. 2017; Sarnocińska et al.
2020; Simonis et al. 2020). Thompson et al. (2013) used DPHd and Dähne
et al. (2013) used detection positive 10-min segments per hour (DP10Mhr)
and per day (DP10Md).

Table 1: Response variable options using cue detections made from PAM data and applicable models

Response Time unit (with example) Applicable modeling approaches
Presence-absence of detections Discretized segments (1-min) GLM/GEE/GAM, HMM

Counts of detections Discretized segments (1-min) GLM/GEE/GAM, HMM
Counts of detection positive sections Discretized segments (DPMhr) GLM/GEE/GAM, HMM

Start times of detections Continuous Point Process Models
Waiting times between detections Continuous GLM/GEE/GAM

Additional options of response variables not listed in Table 1 involve further
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processing of detections by identifying, e.g., click trains (sequences of odon-
tocete clicks) or encounters of groups. Oswald et al. (2015), for example,
grouped detections from a single detector into individual encounters by at-
tributing all successive detections to the same encounter as long as they were
not separated by more than 30 min, in which case they were attributed to
a new encounter. Further processing – such as localization of the animals
when producing the cue or matching detections between detectors – is re-
quired for fitting models of absolute call abundance to detections from PAM
data (Stevenson et al. 2015; Booth et al. 2017; e.g., plot sampling, distance
sampling or spatial capture-recapture models, Oedekoven et al. 2022). In
these cases, additional information, such as direction to the detection, signal
strength or time of arrival, available from some detectors, has been shown to
improve estimates of abundance (e.g., Stevenson et al. 2015). However, none
of these options were considered here as we only describe and test methods
applied to detection data.
Regardless of choice in response variable, it is important to remember that a
change in number of detections during a disturbance can have various causes.
For example, fewer detections during periods with high noise levels could be
due to animals leaving the area or animals producing cues less frequently
when noise levels are up, or due to animals being less detectable due to the
increased noise levels.

3.3 Model covariates

3.3.1 Potential covariates of interest

In order to identify a potential impact of the disturbance, we need to define
a suitable covariate that allows us to capture any change in detection rate
related to the disturbance. A before/during/after disturbance covariate could
be set up as a 3-level factor variable referring to the periods before, during
and after a disturbance (e.g. pile driving, Brandt et al. 2011). If the response
is expected to occur on a shorter timescale, a 2-level factor variable such as
disturbance presence could be used to refer to periods with presence of the
disturbance vs periods with absence. This is the preferred option in cases
where the disturbance takes place over large periods and no distinct before
or after periods can be defined. An example for such a covariate is sonar
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presence in areas where military exercises are conducted throughout the year
(see e.g. section 5).
The disturbance covariate could also directly be derived from the received
noise levels at the detector. The variable sound exposure level (SEL) can be
measured per sonar ping or cumulatively over some time frame of interest
(Oedekoven and Thomas 2017; Simonis et al. 2020).
Another complication for interpretation is that the distance from the animal
to the detectors may be quite large, in particular for those animals producing
cues in the lower frequencies as transmission loss is less at lower frequencies.
Hence, noise levels received at the detectors may not always be representative
of the noise levels received by the animals.
The effect of the disturbance may also continue for some time after the dis-
turbance has stopped as, e.g., animals that may have left the area may take
some time to return or animals simply produce fewer cues. To capture a
lagged return to normal cue production behavior (or a lagged return into the
area), a lag covariate could be set up as time since last sonar.

3.3.2 Additional covariates

Various covariates can be used which might help explain at least part of the
natural variability in the detection data. Examples of these include temporal
covariates such as survey year, date (e.g. Julian date: Julian) or time of day
(e.g. hour), oceanographic variables, e.g. SST (sea-surface temperature), or
spatial covariates such as depth of the ocean or distance to coast. In order to
use spatial covariates, PAM data needs to include at least two locations. For
oceanographic and some spatial variables it is again important to consider
that lower frequency animals may be quite some distance away from the
detector. An average over the area from which the animals may be detected
from could be used instead of the value measured at the location of the
detector.

3.3.3 Setting up covariates

When using discretized time segments for the response variable, the covariates
need to be set up so that they represent the segment adequately. When
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using oceanographic variables, e.g. SST, averages can be taken across the
time interval. When using start times, it is important to not only attribute
covariate values to the specific start times but also to the periods between
the start times. To this end, some form of discretization (e.g. to the nearest
second or minute) should be considered.

4 Statistical Methods

4.1 Using discretized time segments to fit generalized linear or generalized
additive models

GLMs and GAMs can be fitted to discretized time segments. For these
types of models, the response variable is related to covariates via a link func-
tion whose purpose is to constrain the model predictions to plausible values,
i.e. between 0 and 1 for binomial models (e.g. using presence-absence of cues
per minute as the response) and to ≥ 0 for Poisson models (e.g. using number
of cues per 1-min segment as the response). In the following we describe the
models suitable for the two types of responses – binomial and Poisson models
– including their link functions and describe how to build the predictor used
in these models.

4.1.1 Modelling presence-absence data

For presence-absence models, the response variable yi is a 1 or 0 for each
of i = 1, ..., I segments. For each segment with at least one detection yi =
1, otherwise yi = 0, representing the absence of detections. The response
variable is then modeled in a binomial model, specifically a Bernoulli, where
each segment is a trial, presences are the successful outcomes (absences are
the failures) and pi is the probability of success for presence of call detections
in the ith segment. As each segment represents an independent trial, we
model the response using:

yi ∼ Bernoulli (pi) . (1)

This probability is commonly modeled via a logit link function:
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pi = exp (ηi)
1 + exp (ηi)

or log
(

pi

1 − pi

)
= ηi, (2)

where ηi is the predictor on the scale of the link function for the ith segment
(see section 4.1.3).

4.1.2 Modelling count data

When using counts of detections within each segment, the response can be
modeled as a Poisson random variable:

yi ∼ Poisson (µi) ,

where yi are the counts of detections in the ith segment and µi is the expected
value; µi is modeled via a link function, usually the log link::

µi = exp (ηi) (3)

where ηi is the predictor on the scale of the link function (see below).

4.1.3 The predictor

Regardless of response type, the predictor ηi is expressed as a function of
covariates:

ηi = β0 +
∑
q

fq (xqi) , (4)

where β0 is the intercept and fq(xq) is a function applied to the qth covariate
xq. The function fq(xq) can take various forms depending on whether the
covariate is a factor variable (e.g. variable before/during/after disturbance
with three levels, see above) or a continuous variable (e.g. depth). In the
latter case we further distinguish between linear relationships between the
response and the covariate (linear on the link scale) and smooth terms. For a
GLM, fq() is linear whereas for a GAM, fq() can take a number of non-linear
functional forms using pure or penalized regression splines (e.g. Wood 2017).
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In some cases where covariate values vary in a cyclic fashion, e.g. time of day,
Julian day or month, cyclic smooths can be the appropriate way to fit.
When using counts as the response, it is important to accommodate for varia-
tion in segment lengths. for example, two detections in ten minutes is different
to two detections in 5 minutes. An offset term can be included to account
for this varying effort by modelling counts per unit effort:

ηi = β0 +
∑
q

fq (xqi) + log(ti) , (5)

where ti is the effort, e.g. duration of the segment. So, when using 10-min
segments, the relationship between the linear predictor and the expected
response becomes: µi/ti = exp(ηi) where µi is the number of calls we expect
to detect in a 10 min segment.
Interaction terms between two covariates can be added to equations (4) and
(5) using, e.g.:

f12(x1i, x2i) , (6)

where x1 and x2 can both be factor variables, both continuous variables or
one of them a factor and one a linear or smooth term (e.g., Wood 2003). In
the case that both are linear/smooth terms, equation (6) is a two-dimensional
smooth, suitable, e.g. for modeling spatial effects with x1 and x2 as spatial
coordinates.

4.2 Potential Issues

4.2.1 Collinearity in covariates

This issue arises if any of the covariates can be expressed as a function of
the other covariates in the model and inclusion of these may lead to unstable
relationships between the response and covariates and to inflated standard
errors. For example, daily sea-surface temperature in the spring may in
some cases be expressed as a linear function of date (e.g. Julian date) if
temperatures rise steadily throughout the spring. Collinear covariates in a
model can be identified using variance inflation factors (e.g. using the vif
function from the car library, Fox and Weisberg 2019).
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4.2.2 Overdispersion

Both binomial and Poisson models rely on specific assumptions of a mean-
variance relationship. For a binomial model, this relationship is: V (y) =
np(1 − p) where n is the sample size, which equals 1 for Bernoulli trials. In
the case of extra variability, this assumption is relaxed to V (y) = ϕnp(1 − p)
where ϕ is the dispersion parameter.
Similarly, in the case of the Poisson model, the general assumption of a mean-
variance relationship of V (y) = µ can be relaxed to V (y) = ϕµ in the case of
overdispersion. Again, ϕ is the dispersion parameter.
This parameter is estimated by dividing the sum of squared residuals by
the number of degrees of freedom. In generalized linear and additive mod-
els, overdispersed binomial and Poisson data can be modeled using a quasi-
likelihood where ϕ is estimated. Alternatives to quasi-Poisson models for
overdispersed count data are the negative binomial or Tweedie models (Wood
2017).

4.2.3 Non-independence of consecutive observations

Non-independence of consecutive observations is a frequent issue in time se-
ries data as detections are often made in clusters. This is also the case for
detections made from PAM data where sequences of segments with absences
of any vocalizations (or zero-counts) are followed by sequences of presences
(or counts > 0).
This becomes an issue if non-independence remains in the model residuals
as we assume independence of the response variable the given covariates in
the model. Positive correlation of this type can be identified with the Wald–
Wolfowitz Runs test (Wald and Wolfowitz 1943) and autocorrelation function
plots (e.g. R Core Team 2022).
Alternatives to GLMs in the presence of correlation are generalized estimat-
ing equations (GEEs, Hardin and Hilbe 2013). These models allow fitting
various correlation structures including a first-order autoregressive structure
(AR1), exchangeable, unstructured, user-defined and ‘working independence’
(Højsgaard et al. 2005). We focus on AR1 and ‘working independence’ as
these are often used in the context of spatial or temporal correlation (Thomp-
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son et al. 2014; e.g. Scott-Hayward et al. 2015). For AR1, it is assumed that
for consecutive observations the correlation decays as a constant rate ρl where
ρ is the correlation parameter and l is the lag between observations. For both
AR1 and ‘working independence’ a grouping structure can be implemented
whereby it is assumed that observations within a group are correlated and
groups are independent. Using the “working independence” approach, es-
timates of coefficients are generally the same as using the GLM approach,
however, robust standard errors (RSEs) are estimated (Hardin et al. 2003;
Zeileis 2004). RSEs can also be estimated for GAMs (Scott–Hayward et al.
2014b, 2015).

4.3 Model selection

Various model selection criteria are available which are often based on the
likelihood (or quasi-likelihood) and some form of a penalty term based on the
number of parameters of the models. The choice of the appropriate criterion
depends on the type of model fitted. They each allow comparisons between
models with different plausible sets of covariates as long as the same data are
used. Generally the model with the lowest score is the preferred model.
For likelihood based models (e.g. binomial or Poisson GLMs or GAMs with
pure splines), the Akaike or Bayesion information criterion (AIC or BIC) can
be used (Akaike 1973, 1979):

AIC = −2logLik + knpar , (7)

where logLik is the log-likelihood of the observations given the parameters,
evaluated at the parameter values that maximise the log-likelihood, k = 2
and npar is the number of parameters fitted in the model. For BIC, k = log(n)
with n being the number of observations.
For the quasi-likelihood version of these models, quasi-AIC (QAIC) or quasi-
BIC (QBIC) can be used (Schwarz 1978; e.g. Barton 2022):

QAIC = −2logLik/ϕ + knpar , (8)

where the log-likelihood logLik is obtained by fitting a non-quasi model to the
same data; ϕ is the dispersion parameter from the most complex model that
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is part of the model comparison and k = 2 (QAIC) or k = log(n) (QBIC).
The quasi-likelihood under the independence model criterion (QIC) is also
adapted from AIC and based on a quasi-likelihood and with a modified
penalty term (Pan 2001; Cui and Qian 2007). It can be used for compar-
ing GEEs models as it accounts for the overdispersion and the correlation
structure assumed for the model.

QIC = −2Q(µ̂; I) + 2trace(Ω̂−1
I V̂R) , (9)

with the quasi-likelihood Q(µ) = ∫ µ
y

y−t
ϕV (t) , expected value µ = E(y) and

variance V ar(y) = ϕV (µ). Ω̂I is the negative Hessian of Q(µ̂; I). I is the in-
dependent correlation structure under which the quasi-likelihood is obtained.
V̂R represents an estimate of the variance based on a general working correla-
tion structure R. QIC can also be used to determine the optimal correlation
structure for a GEE. Cui and Qian (2007) recommended to first determine
the optimal correlation structure by fitting the most complex model with all
covariates with different correlation structures. The correlation structure of
the model with minimum QIC should be used for all further models fitted to
determine the best covariate combination.
For GAMs fitted with the mgcv package (Wood et al. 2016), unless a fixed
number of knots is specified, an un-biased risk estimator (UBRE) score – or
generalized cross validation (GCV) for quasi-likelihood models – is returned
which can be used for model selection:

GCV = nDev

(n − edf)2

UBRE = Dev

n
+ 2ϕedf

n
− ϕ ,

(10)

where Dev is the deviance under the model and edf the effective degrees of
freedom of the model. For more details on penalized regression splines and
edf see, e.g., Wood (2011), Wood (2017). Notice that UBRE is effectively
just AIC rescaled, but is only used when ϕ is known.
Alternatively, K-fold cross-validation scores provide a relative measure of the
predictive power of the models and can be used for model selection. The
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data are split into K folds, the model refitted to the data K times excluding
one fold (the unseen data) at a time. The unseen data yu is then compared
to their corresponding predicted values ŷu using a cost function. Package
MRSea, for example, provides this option using the default cost function of∑K (∑(yu − ŷu)2/nu) (Scott–Hayward et al. 2014a).
Marginal testing using p-values from, e.g., likelihood-ratio chi-square, Wald
chi-square or F-tests can be used to determine if individual covariates should
be retained in the model,as long at the p-values are trustworthy, i.e. any
residual correlation present has been accounted for. If residual correlation is
present, RSEs must be used to calculate the test-statistics to find the p-values
(Hardin et al. 2003; Zeileis 2004).
The number of covariates that can be included determines the total number
of candidate models for comparison. For example, if there are two covariates,
the total number of models is four including the null model, two single covari-
ate models and one two-covariate model. For three covariates, this number
increases to eight, for four to 16, etc. In cases where the number of possible
models is too large to consider, step-wise model selection may be used where
one covariate is added to or removed from the model at a time and the selec-
tion criteria implemented at each step. Alternatively, methods for automatic
model selection exist, such as covariate removals by shrinking the coefficients
to zero (e.g. Marra and Wood 2011) but are not discussed in detail here.
However, collinear covariates should not be included together (section 5.4.5)
and models should be plausible (Anderson and Burnham 2004).

4.4 R functions for fitting GLMs and GAMs

GLMs can be fitted using the glm function from the stats package
(R Core Team 2022, Table 2). GEEs can be fitted with the geeglm
function from the geepack package (Højsgaard et al. 2005). Both glm
and geeglm support splines fitted, e.g., via the bs function (splines
package, R Core Team 2022). Smooths can also be fitted with the gam
and bam functions of the mgcv package (Wood, Pya and Säfken 2016)
or the gamMRSea function of the MRSea package (Scott-Hayward et al.
2014a). Functions gam and bam both allow fitting penalized regression
splines (Wood 2017), the latter being particularly suited for large data sets
due to the potential of much shorter run times. Function bam makes some
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approximations in order to decrease run times and its memory footprint that
are particularly relevant for large datasets such as those commonly generated
by PAM data. This function also allows fitting an AR1 correlation structure.
By contrast, gamMRSea allows fitting RSEs (Zeileis 2004).

Table 2: Comparison of R functions that have been used for fitting GLMs, GEEs and GAMs to PAM data1.
Yes indicates package has built-in methods

Function glm geeglm gam bam gamMRSea
R package name stats geepack mgcv mgcv MRSea
Factor variables Yes Yes Yes Yes Yes
Linear relationships Yes Yes Yes Yes Yes
Smooth functions
• Pure regression splines Manually2 Manually2 Yes Yes Yes
• Penalized regression splines No No Yes Yes No
Overdispersion Yes Yes Yes Yes Yes
Non-independence
• Robust SE No Yes No No Yes
• AR1 No Yes No Yes3 No
1Other options are available but not listed here.
2Via e.g. splines functions.
3But only global AR1, not panel-based.

Pure and penalized regression splines use basis functions (e.g. polynomial or
cubic splines, Wood and Augustin 2002); controlling the wiggliness of the
smooth involves choosing the number of basis functions and knots. Knots
can be thought of as locations within the covariate range where pieces of the
smooth are joined together. The more knots and the more basis functions,
the wigglier the smooth. Penalized regression splines generally employ a large
number of knots and control the wiggliness of the smooth via a wiggliness
penalty. This is the default method for mgcv functions gam and bam. The
wiggliness of pure regression splines can be controlled using a spatially adap-
tive smoothing algorithm (SALSA, Walker et al. 2010), where the number
and location of knots is optimized given a set of basis functions and range of
knot numbers. This is the default method for gamMRSea. Cyclic smooths are
recommended when the highest covariate value joins with the lowest, e.g. for
covariate time of day, where midnight (24:00:00) is followed by 00:00:01.
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5 Case study: beaked whales in the presence of Navy sonar

5.1 Objective

In this section, we illustrate the application of the different methods described
above to a case study of beaked whales in the presence of MFA sonar in the
SOCAL Navy testing range off Southern California. Here, the general re-
search question of interest was: does the rate of detecting beaked whale clicks
(cues) change in the presence of Navy sonar? To investigate this question, we
related the response variable (number of clicks detected in 1-min segments)
to various explanatory covariates, some of these relating to sonar, using the
GAM approach. More specifically, we fitted models with the functions bam,
gamMRSea and geeglm to illustrate the different options available for each
of these model types. We focus on the GAM approach as the data volume
(Table 3) and number of covariates considered (section 5.3) rendered both
the HMM and point process modelling approaches unfeasible.

5.2 The data

We analyzed detections of Cuvier’s beaked whale (Ziphius cavirostris) clicks
from PAM recordings made with High-frequency Acoustic Recording Pack-
ages (HARPs) deployed in Southern California within the SOCAL Navy
testing range (Baumann-Pickering et al. 2014; Solsona Berga et al. 2019).
Recordings were available from multiple sites and multiple years (2009-2015).
However, we limited our case study to a single site (H) and year (2014) (Fig-
ure 1) to ensure run times for all models were manageable, i.e. on the scale
of minutes or hours vs days or weeks. We refer to these data as the beaked
whale data set in the following. This data set included 244,688 Cuvier’s
beaked whale click detections and 108,201 sonar ping detections along with
their start times from 348 different days. The discretized version of these
data consisted of 495,661 1-min segments for which counts of beaked whale
detections, counts of sonar ping detections and measurements of sonar-related
covariates were available (Table 3). Covariates are discussed in detail below.
Table 3 highlights various aspects of the data set that could potentially lead
to issues during the analysis. 98.9% and 96.1% of all segments contained no
beaked whale or sonar ping detections, respectively. This raises the question
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Figure 1: Counts of beaked whale click detections (black) and sonar pings (red) per day in 2014 from
recordings on a HARP instrument located in the SOCAL Navy Range. Days the PAM device was operational
are shaded gray.

whether the data should be discretized at a coarser scale, e.g. as 10-min or
1-hr segments. However, presences vs absences of clicks and sonar varied on
a fine scale: 9.0% of 1-min segments with presence of sonar were followed by
at least one segment with absence of sonar. 23.6% of 1-min segments with
presence of beaked whale clicks were followed by at least one segment with
absence of clicks. 42.3% of breaks between sonar presences were only 1 min
(71.4% ≤ 10 min, 82.7% ≤ 1 hr). 19.9% of all sonar events (uninterrupted
sequences of 1-min segments with sonar presence) only lasted 1 min (79.2%
lasted ≤ 10 min, 96.7% lasted ≤ 1 hr). Using a coarser scale than 1-min
segments, we would lose the ability to capture potential fine scale responses
by the whales to presences of sonar.
We further note that the data set represents a period during which the sonar
was more or less continuously present – at least when considered on a daily
basis (Figure 1). Hence, the approach used in, e.g. Jacobson et al. (2022)
or Tougaard et al. (2006), where periods before an exposure that could be
considered a baseline, were compared with periods of during and after, could
not be applied. Nonetheless, we could investigate if the presence of sonar,
the duration of sonar exposure, breaks between sonar exposure or attributes
of sonar itself had effects on the detection rate of beaked whale clicks.
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Table 3: Number of 1-min segments in the beaked whale data set; minimum, maximum, median and mean
counts of beaked whale clicks (zc) and sonar pings (s) per segment; number of zero and non-zero counts per
segment (0 segments and non-0 segments), number of 1-min segments with zero beaked whale click counts
when sonar ping counts was non-zero (0 non-0 segments: zc) and opposite (0 non-0 segments: s) and number
of segments with zero counts for both (0-0).

Clicks Sonar pings
Number of segments 495,661

Minimum count per segment 0 0
Maximum count per segment 464 31

Median count per segment 0 0
Mean count per segment 0.49 0.22

Number of zero count segments 490,240 476,285
Number of non-zero count segments 5421 19,376

Number of zero click segments when pings are non-zero 19,147 –
Number of zero ping segments when clicks are non-zero – 5192

Number of segments with zero clicks and pings 471,093

5.3 Covariates

The covariates available could be divided into those related to sonar and non-
anthropogenic covariates. For the latter, we considered time of day, Julian
and month (Figure 2). For the covariate pertaining to time of day, timeofd,
the sunrise-sunset data was incorporated into scaled time of day. First, the
local time was scaled between [-1, 1], where 0 was the sunset and -1/1 were
the sunrise. Thus, all the negative values between -1 and 0 were daylight
times, and all positive values between 0 and 1 were night times. In this way,
the covariate was not affected by annual variation in day length, or clock
changes and had the potential to pick up any effects related to, e.g., day vs
night or increased clicking during sunrise or sunset.
The detection of sonar pings involved the following process. The sonar tonal
contours were detected in the frequency range between 2 and 4.5 kHz with
a signal-to-noise ratio above 5 dB and contour durations of at least 200 ms.
Detected tonal pings that were close in time and frequency were combined
if they were less than 250 ms and 1000 Hz apart. Specific metrics were
computed for each ping detection including minimum, maximum, start, and
end frequencies, as well as peak-to-peak received level (RLpp, dB re 1 uPa)
and SEL (dB re 1 uPa2∗s).
Covariates pertaining to sonar included the number of sonar pings detected
per 1-min segment (sCount) and binary variable sonar presence (sPres, 1 =
presence vs 0 = absence of sonar pings per 1-min segment). The proportion
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of the 1-min segment during which sonar was detected (sProp) was used to
capture the variability in amount of sonar per 1-min segment. The duration
of sonar activity (sDur) was measured as the number of consecutive 1-min
segments with sonar presence. In order to account for a potential lag in the
response to absence of sonar, we defined covariate sLag as the number of
1-min segments of uninterrupted sonar absence. The two covariates describ-
ing features of the sonar itself included the maximum peak-to-peak received
level (maxRLpp) and cumulative sound exposure level (cumSEL). Covari-
ate maxRLpp was calculated as the maximum received level among all pings
within a given 1-min segment and cumSEL accordingly as the cumulative
sound exposure level of all pings within a given 1-min segment.

5.4 Data exploration

5.4.1 Violin plots

Figures 2 and 3 provide a first look at potential patterns between the response
and the covariates. From these we were able to draw the following conclusions:
1) the medians and interquartile ranges of the response were zero across the
entire range of each covariate; 2) across the range of each covariate, there is
variability in the outliers and maximum values of the response; 3) there are
long tails with few observations indicated by yellow, amber and red dots for
several covariates (see e.g., sCount or sProp) which may lead to problems
during model fitting, in particular for smooth functions; 4) there were data
gaps for two covariates, maxRLpp and cumSEL. These existed because sonar
pings were only classified as such when the received level exceeded a fixed
threshold of 100 dB. Hence, all sonar pings that may have been received at
the recorder at <100 dB were not detected and – in case no other sonar ping
was detected in the same 1-min segment – covariates sPres, maxRLpp and
cumSEL falsely set to zero. For the latter two covariates this further resulted
in no data existing in the covariate range between 0 and 100 dB. This has
consequences for how we were able to fit this covariate (see below for more
details).
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Figure 2: Violin plots describing the relationship between beaked whale (zc) click counts per 1-min segment
and non-sonar variables divided into 20 equi-width bins. Median shown as colored dots indicating the sample
size within the bin (green: >100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in
white but all equal zero.
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Figure 3: Violin plots describing the relationship between beaked whale (zc) click counts per 1-min segment
and sonar-related variables. Median shown as colored dots indicating the sample size within the bin (green:
>100, yellow: <101, amber: <21, red: <11), interquartile ranges would show in white but all equal zero.
Vertical red lines indicate a data gap between 0–100 dB for maxRLpp and 0–120 dB for cumSEL.
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5.4.2 Mean response across covariate ranges

Using the same bins as in Figures 2 and 3, plotting the mean response against
covariates revealed much better what patterns we may find during model
fitting (Figures 4 and 5). For any of the covariates except sPres, which
is binary, smooth functions will likely be more suitable compared to linear
terms.

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
4

0.
6

0.
8

Time of day

zc
 c

ou
nt

s

0 50 150 250 350

0.
2

0.
6

1.
0

Binned Julian date

zc
 c

ou
nt

s

2 4 6 8 10 12

0.
2

0.
4

0.
6

0.
8

Month

zc
 c

ou
nt

s

Figure 4: Mean beaked whale (zc) click counts per 1-min segment in relation to non-sonar variables divided
into 20 equi-width bins. Colored dots indicate the sample size within the bin (green: >100, yellow: <101,
amber: <21, red: <11).
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Figure 5: Mean response of beaked whale (zc) click counts per 1-min segment in relation to sonar-related
variables divided into 20 equi-width bins. Median shown as colored dots indicating the sample size within
the bin (green: >100, yellow: <101, amber: <21, red: <11). Vertical red lines indicate a data gap between
0–100 dB for maxRLpp and 0–120 dB for cumSEL
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5.4.3 Covariate scaling

Figures 2 – 5 highlighted that covariates were not on similar scales. For
example, sProp ranged from 0–0.236 while sLag ranged from 0–25,371. Using
similar scales for covariates has been shown to improve the precision of model
predictions (Buntaran et al. 2021). In order to bring all covariates on similar
scales, we applied the following transformations:

• timeofd was multiplied by 100, increasing the range to -100 – 100 with
-100/100 as sunrise and 0 as sunset

• sProp was multiplied by 100, i.e. turning it from a proportion into a
percentage, with a maximum of 23.6%

• sLag was divided by 24*60, i.e. turning its unit from number of 1-min
segments into number of days, with a maximum of 17.9 days

5.4.4 Data-scarce tails of observed covariate values

Figures 3 and 5 also highlighted that some covariates had very few observa-
tions in the higher regions of the covariate values (see yellow, amber and red
dots). With little data to support the smooth estimation in these regions,
the uncertainty estimation maybe unduly large for some types of spline. For
example, the mean response for sDur was > 0.5 in the highest two bins due
to only three observations with a non-zero response (Figure 5). Smooth func-
tions may try to fit too closely to such patterns in the tails and confidence
intervals have the tendency to be very wide in these regions.
A few methods exist to alleviate this issue which can each be considered on
its own or in combination with another method. One method is to control
the wiggliness of the smooth function. This can be done, e.g., by reducing the
maximum number of knots or degrees of freedom allowed for the respective
smooth or, in the case of bam models, by increasing the penalty for wiggliness
(Wood 2017). Furthermore, various types of smooths are available. For
example, thin-plate regression splines are the default type of smooth for bam
models (Wood 2003); however, cubic regression splines (and cyclic-cubic) and
p-splines are some of the additional options available. Fitting single covariate
models using different types in preliminary analyses may reveal that using
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non-default options are better in some cases. For our case study, the only
case for which we found a marked difference for bam models was covariate
sLag (Figure 6). However, in this case, the thin-plate spline was considered
the better option due to the much wider confidence interval for the cubic
regression spline.

Figure 6: Partial fit on the link scale with 95% CIs for covariate sLag in single covariate bam model fitted
with thin-plate regression spline ’tp’ (left) and alternative option of cubic regression spline ’cr’ (right). The
dimension of the basis used to represent the smooth term was set to k = 5 for both.

For gamMRSea models, covariate maxRLpp fitted as a natural cubic spline
was preferred over polynomial spline due to the extremely wide confidence
intervals (CIs) when using the latter (Figure 7).
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Figure 7: Partial fit on the response scale with 95% CIs for covariate maxRLpp in single covariate gamMRSea
model fitted with polynomial spline ’bs’ (left) and natural cubic spline ’ns’ (right) where data were limited
to those observations with presence of sonar (and maxRLpp non-zero).

Binning outliers is another option to alleviate the data-scarce tails problem:
this requires changing some of the observed values of the covariates and should
only be considered as a last resort. More specifically, if the tail is at the high
end of the observed covariate range (right tail), those covariate values higher
than the highest value at which inference is desired could be changed to this
value. The equivalent method can be applied for data scarce left tails. For
example, all covariate values that are considered outliers could be changed
to the highest observed value not considered an outlier (or lowest in case of
a data-scarce left tail). Outlier definitions can be based on how far values
are from the interquartile range (IQR) of observed values. For example,
all values beyond 1.5× the width of the IQR from the IQR are defined as
outliers by the boxplot function (R Core Team 2022). For our case study,
binning sProp in this manner would entail changing 485 outlier values (out
of the 495,661 1-min segments) to the highest value not considered an outlier
for binned sProp2 (11.47, Figure 8). In this case, the interpretation for
predicted responses at sProp2 = 11.47 then changes from the expected mean
response at sProp = 11.47 when not binning to the expected mean response
at sProp2 ≥ 11.47. An alternative to binning is to limit model predictions
(and inference) to the range of covariate values at which sufficient data are
available. This was the preferred option for our case study as it did not
require altering observed values.
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Figure 8: Partial fit on the link scale with 95% CIs for covariate sProp (left and middle) and binned sProp2
(right) in single covariate bam models. Middle plot shows range of partial fit limited to the same range as
right plot.

5.4.5 Assessing collinearity

Strong correlation existed between several pairs of covariates, in particular
Julian and month, sCount and sProp, sPres and maxRLpp, sPres and cum-
SEL, maxRLpp and cumSEL (Table 4).

Table 4: Correlation between potential covariates rounded to nearest decimal point. Off-diagonal 1.0 high-
lighted in red (diagonal 1.0 in green).

timeofd Julian month sCount sPres sProp sLag sDur maxRLpp cumSEL
timeofd 1.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 -0.1 -0.1 -0.1
Julian 0.0 1.0 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Month 0.0 1.0 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
sCount -0.1 0.0 0.0 1.0 0.8 1.0 -0.1 0.6 0.8 0.8
sPres -0.1 0.0 0.0 0.8 1.0 0.8 -0.2 0.6 1.0 1.0
sProp -0.1 0.0 0.0 1.0 0.8 1.0 -0.1 0.6 0.8 0.8
sLag 0.0 0.1 0.1 -0.1 -0.2 -0.1 1.0 -0.1 -0.2 -0.2
sDur -0.1 0.0 0.0 0.6 0.6 0.6 -0.1 1.0 0.6 0.6

maxRLpp -0.1 0.0 0.0 0.8 1.0 0.8 -0.2 0.6 1.0 1.0
cumSEL -0.1 0.0 0.0 0.8 1.0 0.8 -0.2 0.6 1.0 1.0

To properly assess collinearity between covariates in the model we used the
vif function from the car library which calculates variance-inflation and
generalized variance-inflation factors (VIFs and GVIFs) (Fox and Weisberg
2019). VIFs can be used for comparing linear terms, GVIFs for factor or
smooth terms (where the nonlienar equivalent to collinearity is called con-
curvity). We tested both fitting each covariate as a polynomial spline and as
a linear term. Starting with a full model where each of the 10 covariates from
Table 4 was fitted in a GLM, we eliminated the covariate with the highest
GVIF (or VIF when comparing linear terms) and refitted the model until all
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GVIFs and VIFs were below 5. After this process six covariates remained for
model fitting: timeofd, Julian, sProp, sLag, sDur and maxRLpp.

5.4.6 Assessing autocorrelation

Two approaches for dealing with autocorrelation were considered for our case
study: estimating RSEs and fitting an AR1 correlation structure. Models fit-
ted with gamMRSea allow the former while bam allows the latter; geeglm
allows both as well as a comparison of which provides a better fit to the data.
For any of these models, consecutive observations that are considered to be
correlated need to be grouped, while groups are considered independent. We
note that this may seem artificial for our case study as there is no natu-
ral division into groups that may be considered independent from each other.
However, calculating an AR1 correlation structure across all 495,661 observa-
tions generally caused the software to give out-of-memory errors. In practice
correlation decreases to a negligible value at some point, and so the grouping
can be seen as a pragmatic approximation. Guidance on what constitutes a
negligible value can be taken from the 95% CIs from the output of the acf
function its plot (see next paragraph and Figure 9). Also, within a range of
sensible group sizes the results are unaffected. However, if group sizes are too
small (or too large) can lead to falsely retaining covariates in the model (or
omitting covariates from the model). We discuss now how adequate group
sizes can be established.
We begin by fitting a bam model with all available covariates fitted as
smooths without specifying any correlation structure (call it bam6). We used
the acf function to determine the correlation in bam6 residuals across lags
of 0 – 50 observations (Figure 9). At lag 50, the correlation first dipped within
the 95% CIs of zero autocorrelation. Hence, we used groups of 50 consecutive
observations. The correlation at lag 1 from Figure 9 can be used to obtain
the parameter ρ for fitting an AR1 structure in bam models (function bam
requires input of this parameter while geeglm estimates ρ as part of the
model fitting process).
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Figure 9: Autocorrelation in residuals of initial bam model fitted with all six variables as smooth terms (black
vertical lines). Red line indicates the decay in correlation according to an AR1 structure where parameter
ρ was set to the estimated autocorrelation in Pearson residuals at lag 1. Right plot shows a zoom in of left
plot.

To determine whether a group size of 50 was adequate for estimating RSEs,
we refitted a single covariate (timeofd) model with varying group sizes. As
RSEs for all the coefficients in the model leveled off at 50, we deemed this a
suitable group size for RSEs (Figure 10).
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Figure 10: Robust standard errors of model terms in a single covariate gamMRSea model with timeofd against
varying group sizes used for fitting the model. Black: intercept; red, green and blue: three polynomial basis
functions.

To determine if 50 was a suitable group size for fitting an AR1 structure, we
refitted multiple single covariate geeglm models with varying group sizes
and extracted the estimated parameter ρ. As ρ was reasonably stable at
group size 50 for all six single covariate models, we deemed it appropriate for
use (Figure 11).

Figure 11: Estimated parameter ρ against group sizes used in single covariate geeglm models.

5.4.7 Fitting factor-smooth interactions with missing data

The particular challenge for this case study existed in finding a suitable way
to fit a smooth function to covariate maxRLpp where a range of values were
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missing or unobserved: maxRLpp was equal to 0 dB when sPres = 0 and
ranged between 100 and 164 when sPres = 1. The issue lies in the fact
that there was no data to model the relationship between the response and
maxRLpp for maxRLpp values between 0 and 100 dB. A similar issue would
exist when attempting a linear term, however, we focus on smooth functions.
We started by exploring various options available for fitting a factor-smooth
interaction. Smooth functions defined via the s function in bam models
can be set up as interactions with factor variables using, e.g., example 1:
s(maxRLpp, by = as.factor(sPres)) or example 2: s(maxRLpp,
as.factor(sPres), bs = “fs”) (Pedersen et al. 2019; Wood 2017).
Both options allowed the smooths fitted to each level of the factor covariate to
differ: the former allowed group specific smoothers with different wiggliness,
the latter allowed different shapes of the smoothness (but same wiggliness).
However, none of these options recognized that the range of maxRLpp differed
for the two levels of sPres and, hence, fitted a smooth function across the
entire range from 0 to 160 dB for both levels of sPres. The following code
fits smooth maxRLpp as an interaction with sPres using example 1 (Figure
12). Argument shift includes the intercept (β0 from equation (4)) in the
linear predictor ηi and argument trans transforms the linear predictor onto
the response scale (e.g. from etai to µi in equation (3)).

rho <- 0.8400991
b1.6.by <- bam(response ~ s(maxRLpp, by = as.factor(sPres), k = 5),

scale = 0, rho = rho, AR.start = NULL, discrete=TRUE,
data=zc14, family = quasipoisson(), na.action = "na.fail")

plot(b1.6.by, trans = family(b1.6.by)$linkinv, shift = coef(b1.6.by)[1])
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Figure 12: Partial fits on the response scale for smooth maxRLpp fitted as an interaction with sPres in bam
model b1.6.by using the code above. Red dashed lines indicate 95% CIs.

One could argue that we could simply restrict our predictions to maxRLpp
= 0|sPres = 0 and to maxRLpp = 100–164|sPres = 1. However, the shape of
the relationship for maxRLpp >100 dB in Figure 12 was influenced strongly
by the mean response at 0 dB and did not reflect the pattern seen in the data
exploration plots (Figure 5). Thus we conclude that neither of these options
are suitable for modelling a covariate of this nature. We introduce a new
way of fitting an interaction that limits the smooth functions to the observed
range of the covariate for a given factor level. This approach is applicable
all models for which the design matrix can be manually altered (e.g., bam,
gamMRSea, geeglm). In a first step, we create basis functions that respect
the nature of maxRLpp using options from the splines package (R Core
Team 2022). This is done in the following steps:

1) First, we filter out the data for when maxRLpp is not zero (sPres = 1).

2) We fit a spline to these data in a single covariate GLM.

3) We extract the b basis functions from the model matrix. For spline spec-
ification either manually select knot number and location bam models,
Wood (2017)] or use SALSA from MRSea to do this (Scott–Hayward et
al. 2014b).
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4) Merge the basis functions back into the full data inserting a 0 for all rows
where maxRLpp = 0.

5) Add an intercept-like column to allow estimation of when maxRLpp = 0.
This column is 1 for maxRLpp = 0 and zero otherwise.

6) Fit a new model to the full data with the b basis columns and extra inter-
cept column as linear terms. For each of these, a coefficients is estimated
and, when combined together, create a discrete-smooth relationship for
maxRLpp (Figure 13). Note, the wide CIs for maxRLpp > 150 corre-
spond to the small sample size in these regions (Figure 3). Other terms
may be added in the standard way for the different methods.

Examples specific to the models are in the sections that follow.

Figure 13: Partial fits on the response scale for maxRLpp fitted as a polynomial spline as an interaction term
with sPres. Red dashed lines indicate 95% CIs.

5.5 Models fitted with bam

5.5.1 Model fitting

Model fitting was based on the six candidate covariates: timeofd, Julian,
sProp, sLag, sDur and maxRLpp. The latter was included using the
interaction with sPres described in the previous section, referred to as
maxRLpp:sPres in the following. Specifically, the smooth part of maxRLpp
was fitted with a quadratic polynomial. Julian, sProp, sLag and sDur were
fitted with thin-plate regression splines (Wood 2003), timeofd as a cyclic
cubic regression spline. As only one year of data were included in this case
study, we opted out of fitting Julian as a cyclic spline. We used the model
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bam6 from above (Figure 9) to determine ρ (0.84) which was used for
fitting all following bam models. We fitted all bam models with an AR1
correlation structure. As our models were not Gaussian, this required setting
discrete = TRUE. This entails that covariate values for a given smooth
are discretized – which is done by the function algorithm – before model
fitting (Wood 2017). The AR1 structure is applied to the working residuals,
thereby approximating a GEE. Model selection was based on minimum GCV
scores (equation 10).

5.5.2 Code for fitting the maxRLpp:sPres interaction

As described in section 5.4.7, this involves filtering the data for sPres = 1
and fitting a smooth for maxRLpp to these data (Figure 14).

zc14$datetime <- as.POSIXct(zc14$Start, format="%d-%b-%Y %H:%M:%S")
# Create smooth in non-zero portion
testdat <- filter(zc14, maxRLpp != 0)
test_b1.6 <- glm(response ~ bs(maxRLpp, degree = 2),

data=testdat, family = quasipoisson())
termplot(test_b1.6)

Figure 14: Partial fit on the link scale for maxRLpp fitted as a polynomial spline with 2 degrees of freedom
in a GLM to data with sPres = 1. Dashed lines indicate pointwise standard errors.
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Then the two baseline functions are extracted from the model matrix and
merged with the full data set (including segments with sPres = 0). This
involved generating an intercept column for estimating the expected response
when maxRLpp = 0, and fitting a bam model with additional smooth terms.

# fit spline to larger data.
modmat.maxRLpp <-

model.matrix(test_b1.6)[,(2:length(test_b1.6$coefficients))]
mergedata <-

data.frame(datetime = testdat$datetime, modmat.maxRLpp)
names(mergedata) <-

c("datetime", "maxRLpp2.1", "maxRLpp2.2")
# add intercept column for estimating mean at maxRLpp=0
# this is zero where smooth applies and 1 otherwise
mergedata$maxRLpp2.0 <- 0
# create new variables in dataset
zc14 <- left_join(zc14, mergedata) %>%

replace_na(list(maxRLpp2.0 = 1, maxRLpp2.1 = 0, maxRLpp2.2 = 0))
# Fitting non-zero smooth to full data
# (with smooth intercept) as a GLM
glmb1.6 <- glm(response ~ maxRLpp2.0 + maxRLpp2.1 + maxRLpp2.2,

data = zc14, family=quasipoisson)
# fit as a bam with additional term smooth Julian
rho <- 0.8400991
b2.6 <- bam(response ~ maxRLpp2.0 + maxRLpp2.1 + maxRLpp2.2

+ s(Julian, k = 5), scale = 0, rho = rho,
AR.start = NULL, discrete = TRUE,

data=zc14, family = quasipoisson())

5.5.3 Code to fit full model

The remaining four covariates are added as smooth terms. Note that timeofd
is fitted as a cyclic smooth. Argument k selects the dimension of the basis
function, thereby allowing for some control over the wiggliness of the smooths.
This could be controlled further via the gamma argument of the bam function
which manipulates the amount of penalization with values larger than the
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default of 1 enforce smoother fits.

# fitting full bam model
b6 <- bam(response ~ maxRLpp2.0 + maxRLpp2.1 + maxRLpp2.2

+ s(timeofd, bs = "cc", k = 5) + s(Julian, k = 5)
+ s(sProp, k = 5) + s(sLag, k = 5)
+ s(sDur, k = 5), scale = 0, rho = rho,
AR.start = NULL, discrete=TRUE, data=zc14,
family = quasipoisson(), na.action = "na.fail")

5.5.4 Forward model selection

Starting with a null model, in each round of model fitting, one covariate was
added at a time, i.e. 6 models in round 1. The covariate with the lowest
GCV score was carried forward into the next round where, again, each of the
remaining covariates were added in individual models. If any of these models
scored a lower GCV, the covariate combination was carried forward to the
next round. This process was continued until adding covariates no longer
lowered the scores or until the model contained all available covariates (Table
5). The model with covariates timeofd, sLag, sDur and maxRLpp:sPres was
deemed best from the forwards selection process (model b4.3 in Table 5).
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Table 5: Models fitted with the ‘bam‘ function when conducting forwards model selection. Covariates
included are indicated with + symbol. Bold GCV score indicates best model continued with in next round,
bold model name indicates best model overall. Rounds separated by horizontal lines. Run time (RT) given
in seconds.

Model timeofd Julian sProp sLag sDur maxRLpp:sPres RT (sec) GCV
b1.1 + 13 1296553
b1.2 + 14 1307249
b1.3 + 6 1297164
b1.4 + 9 1296120
b1.5 + 10 1300254
b1.6 + 5 1863808
b2.1 + + 8 1294585
b2.2 + + 11 1308850
b2.3 + + 11 1296139
b2.4 + + 25 1296717
b2.5 + + 11 1295876
b3.1 + + + 22 1310282
b3.2 + + + 12 1294565
b3.3 + + + 29 1294222
b3.4 + + + 13 1294352
b4.1 + + + + 25 1309789
b4.2 + + + + 28 1294386
b4.3 + + + + 30 1293245
b5.1 + + + + + 79 1309327
b5.2 + + + + + 81 1309327

5.5.5 Backward model selection

We also conducted backward model selection (Table 6). This was a similar
approach, however, starting with the full model, each round of model fitting
determined which covariate should be omitted from the next round based on
which model scored the lowest GCV (Table 6).
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Table 6: Models fitted with the bam function when conducting backwards model selection. Covariates
included are indicated with + symbol. Bold GCV score indicates best model continued with in next round,
bold model name indicates best model overall. Rounds separated by horizontal lines. Run time (RT) given
in seconds.

Model timeofd Julian sProp sLag sDur maxRLpp:sPres RT (sec) GCV
b6 + + + + + + 79 1309327

b5.1 + + + + + 59 1310693
b5.2 + + + + + 43 1294010
b5.3 + + + + + 46 1310097
b5.4 + + + + + 40 1307526
b5.5 + + + + + 24 1310143
b5.6 + + + + + 39 1308448
b4.1 + + + + 23 1294953
b4.2 + + + + 30 1293245
b4.3 + + + + 28 1296035
b4.4 + + + + 15 1294342
b4.5 + + + + 31 1294386
b3.1 + + + 47 1297464
b3.2 + + + 26 1297858
b3.3 + + + 14 1294352
b3.4 + + + 35 1294222

5.5.6 Best model

Both forwards and backwards model selection arrived at the same combina-
tion of covariates: timeofd, sLag, sDur and maxRLpp:sPres (Tables 5 and 6).
Confidence intervals were wide for all sonar related covariates, in particular
in those areas of the covariates with diminishing sample sizes (Figure 15).
The partial fits indicated highest beaked whale click counts for timeofd values
near -40, i.e. early afternoon (0 = sunset and -1/1 = sunrise). Lowest click
counts were expected for timeofd values near 90, i.e. just before sunrise. For
covariate sLag, click counts decreased with increasing sLag after a peak near
sLag = 4, although 95% CIs for this relationship were very wide throughout
the range of the covariate. Similarly, 95% CIs were very wide for sDur and
maxRLpp making any inference about the relationship between the response
and the covariate doubtful. Nonetheless, the model seems to have been driven
by sDur as judged by the largest scale in the partial fits (compare y-axes in
Figure 15.
Model run times were favorably short with the longest run time of 79 seconds
for the full model b6 (Tables 5 and 6).
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Figure 15: Partial fits on the response scale with 95% CIs for the bam model with the lowest GCV score.
Relative frequency of observations indicated in turqouise.

5.6 Models fitted with MRSea functions

5.6.1 Model fitting

Model fitting was based on the six candidate covariates: timeofd, Julian,
sProp, sLag, sDur and maxRLpp. The latter was included using the interac-
tion with sPres referred to as maxRLpp:sPres in the following. Julian, sProp,
sLag and sDur were fitted with quadratic B-splines and timeofd as a cyclic
cubic regression spline. The smooth part of maxRLLp:SPres was selected to
be a natural cubic spline with two degrees of freedom using SALSA for knots
selection. QBIC was used to determine the flexibility of all smooth terms via
the SALSA algorithm (Walker et al. 2010). 10-fold cross-validation was used
to determine the best models using first a forwards selection procedure and
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then a back wards selection process. Note that when using MRSea, backwards
selection can be performed by setting the option removal = TRUE. Residual
correlation is accounted for by providing the argument panelid. This results
in the estimation of robust standard errors. The panel structure was defined
as groups of 50 consecutive observations as described in section 5.4.6.

5.6.2 Code to fit the maxRLpp:sPres interaction

The steps involved for fitting the interaction term with MRSea are similar
to those described for bam in section 5.5.2.

zc14$datetime <- as.POSIXct(zc14$Start, format="%d-%b-%Y %H:%M:%S")

############## fitting maxRLpp requires a 2-step process
# create smooth in non-zero portion
# filter for when maxRLpp not = 0
testdat <- filter(zc14, maxRLpp != 0)

varlist = "maxRLpp"
initialModel <- glm(response ~ 1, data = testdat, family=quasipoisson)

salsa1dlist <- list(fitnessMeasure = "cv.gamMRSea",
minKnots_1d = rep(1, length(varlist)),
maxKnots_1d = rep(2, length(varlist)),
startKnots_1d = rep(1, length(varlist)),
degree = rep(2, length(varlist)),
gaps = rep(0, length(varlist)),
splines = c("ns"), # natural cubic splines
cv.opts=list(cv.gamMRSea.seed=1, K=10))

test1.6 <- runSALSA1D(initialModel, salsa1dlist, varlist = varlist,
predictionData = NULL, datain = testdat,
panelid = testdat$blockid, removal = TRUE)

# extract the basis functions from model fitted to
# non-zero maxRLpp data
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# fit spline to larger data.
testmod <- test1.6$bestModel
# extract the basis functions for maxRLpp from testmod (2 df, so 2 basis functions)
modmat <- model.matrix(testmod)[,(2:length(testmod$coefficients))]
# merge these basis functions with datetime
# (used later to merge with original data)
mergedata <- data.frame(datetime=testdat$datetime, modmat.maxRLpp)
names(mergedata) <- c("datetime", "maxRLpp2.1", "maxRLpp2.2")
# add intercept column for estimating mean at maxRLpp=0
# this is zero where smooth applies (where maxRLpp is non-zero)
# and 1 otherwise (where maxRLpp = 0)
mergedata$maxRLpp2.0 <- 0
# create new variables in dataset (replace_na is required
# to fill in the new variable for maxRLpp = 0)
zc14 <- left_join(zc14, mergedata) %>%

replace_na(list(maxRLpp2.0 = 1, maxRLpp2.1 = 0, maxRLpp2.2 = 0))

# Fitting non-zero smooth to full data (with smooth intercept)
m1.6 <- glm(response ~ maxRLpp2.0 + maxRLpp2.1 + maxRLpp2.2,

data = zc14, family=quasipoisson)

5.6.3 Code to fit the full gamMRSea model

# adding smooth covariates timeofd, Julian, sProp, sLag and sDur
# to m1.6 in the order of CV ranking determined
# in forward model selection
# setting up salsa1Dlist
seqx <- c(2, 4, 3, 5, 1) # order establ. via CV of single cov. models
varlist = c("timeofd", "Julian", "sProp", "sLag", "sDur")[c(seqx)]
salsa1dlist <- list(fitnessMeasure = "cv.gamMRSea",

minKnots_1d = rep(1, length(varlist)),
maxKnots_1d = c(2,2,2,2,2),
startKnots_1d = rep(1, length(varlist)),
degree = rep(2, length(varlist)),
gaps = rep(0, length(varlist)),
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splines = c("cc", "bs","bs","bs", "bs")[seqx],
cv.opts=list(cv.gamMRSea.seed=1, K=10))

# using runSALSA1D to fit gamMRSea model
m6 <- runSALSA1D(m1.6, salsa1dlist, varlist = varlist,

predictionData = NULL, datain = zc14,
panelid = zc14$blockid, removal = TRUE)

5.6.4 Forward model selection

Using forward model selection, we determined that a single covariate model
with Julian fitted as a smooth was the preferred model based on lowest CV
scores from rounds 1 (m1 models with one covariate) and 2 (m2 models with
two covariates) (Table 7).

Table 7: Models fitted with MRSea functions using forwards model selection with cross-validation scores
(CV). Covariates included are indicated with + symbol. Run time (RT) given in minutes. Horizontal lines
indicate rounds of model fitting. Bold CV scores indicates lowest CV score in a round, bold model name the
overall best model.

Model timeofd Julian sProp sLag sDur maxRLpp:sPres RT (mins) CV
m1.1 + 4.0 53.880
m1.2 + 9.3 53.827
m1.3 + 4.5 53.877
m1.4 + 5.6 53.870
m1.5 + 5.0 53.877
m1.6 + 0.1 53.870
m2.1 + + 13.2 53.828
m2.2 + + 10.8 53.834
m2.3 + + 7.8 53.854
m2.4 + + 9.7 53.834
m2.5 + + 4.6 53.864

5.6.5 Backward selection

Backward selection was performed using the full model with option removal
= TRUE to take advantage of the inbuilt model selection tool of the
runSALSA1D function. For a given smooth term, after having found
the optimal knot numbers and locations, the fit is compared to a linear term
for the covariate and to omitting the covariate (Scott–Hayward et al. 2013).
For simplicity, we limited the maximum number of knots to two for each
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covariate and used the preferred option of CV scores for determining the
flexibility of the smooths.
As none of the covariates were removed from the model, the preferred model
contained all six covariates (Table 8).

Table 8: Model fitted with MRSea functions using backwards model selection with cross-validation scores
(CV). Covariates retained by the automatic model selection are indicated with + symbol. Run time (RT)
given in minutes.

Model timeofd Julian sProp sLag sDur maxRLpp:sPres RT (mins) CV
m6 + + + + + + 166 53.808

5.6.6 Best model

The CV score of the full model (Table 8) was lower (53.808) than that of
the preferred model from forwards model selection (53.827 for model m1.2
with Julian, Table 7). Hence, the overall preferred model fitted was the full
model. For all covariates, except maxRLpp, confidence intervals were wide in
relation to the best fitting line across the whole range of covariates (Figure
16). However, in comparison to the partial fits from the best bam model
(Figure 15), CIs were narrower for sDur and maxRLpp in the MRSea model.
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Figure 16: Partial fits on the response scale with 95% CIs for the MRSea model with the lowest CV score.
Relative frequency of observations is indicated in turqouise.

5.7 Models fitted with generalized estimating equations

5.7.1 Model fitting

As for bam and MRSea models, fitting for GEE models was based on the
six candidate covariates: timeofd, Julian, sProp, sLag, sDur and maxRLpp,
each fitted as a smooth. The latter was included using the interaction with
sPres referred to as maxRLpp:sPres as before.
Models fitted with the geeglm function allow incorporating smooths, e.g.,
as polynomial splines via the bs function (or as natural cubic regression
splines via the ns function). Slightly more complicated is incorporating
cyclic smooths via the mgcv::s function.
We make use of the methods for incorporating maxRLpp described for
gamMRSea models in section 5.6.2, i.e. using a natural cubic spline with
two degrees of freedom using SALSA for knots selection for the smooth
part of maxRLLp:SPres. We also make use of the gamMRSea model with
timeofd for extracting the call to fit a cyclic smooth with the s function and
obtaining optimal knot locations.
Optimal knot locations could also be obtained for the polynomial splines for
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Julian, sProp, sLag and sDur ; however, when tested on the full model with an
AR1 structure, it caused the model to crash. Hence, Julian, sProp, sLag and
sDur were fitted with quadratic B-splines without specifying knot locations.
Group sizes for the correlation structure entered the model via argument id.
Should there be missing observations within a group, indexing observations
via the wave argument can be useful. This was not an issue for our case
study.

5.7.2 Code for fitting the full model

5.7.2.1 Using robust standard errors (“working independence”) Here we fit the full
model with all six covariates with the “working independence” structure.
This entails obtaining the basis functions for the maxRLpp:sPres interaction
first, i.e. maxRLpp2.0, maxRLpp2.1, maxRLpp2.2 (section 5.6.2). This fur-
ther involves fitting the gamMRSea model m1.1 first and extracting the
formulation to fit the cyclic smooth for timeofd (section 5.6.3.

# obtaining the call and knot locations for fitting cyclic timeofd
m1.1$bestModel$call
# fitting the model with 'working independence'
g6i <-

geeglm(response ~ maxRLpp2.0 + maxRLpp2.1 + maxRLpp2.2
+ bs(Julian)
+ bs(sLag)
+ bs(sProp)
+ bs(sDur)
+ smooth.construct(s(timeofd, bs = "cc",
k = (length(m1.1$splineParams[[2]]$knots)) + 2),
knots = list(timeofd = as.numeric(c(m1.1$splineParams[[2]]$bd[1],
m1.1$splineParams[[2]]$knots, m1.1$splineParams[[2]]$bd[2]))),
data = data.frame(timeofd))$X[,-1],
data = zc14, family = poisson, id = zc14$blockid,
corstr = "independence")

5.7.2.2 Using an AR1 correlation structure We go through the same steps as in
section 5.7.2.1. However, we specify an AR1 correlation structure.
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# obtaining the call and knot locations for fitting cyclic timeofd
m1.1$bestModel$call
# fitting the model with AR1
g6a <-

geeglm(response ~ maxRLpp2.0 + maxRLpp2.1 + maxRLpp2.2
+ bs(Julian)
+ bs(sLag)
+ bs(sProp)
+ bs(sDur)
+ smooth.construct(s(timeofd, bs = "cc",
k = (length(m1.1$splineParams[[2]]$knots)) + 2),
knots = list(timeofd = as.numeric(c(m1.1$splineParams[[2]]$bd[1],
m1.1$splineParams[[2]]$knots, m1.1$splineParams[[2]]$bd[2]))),
data = data.frame(timeofd))$X[,-1],
data = zc14, family = poisson, id = zc14$blockid,
corstr = "ar1")

5.7.3 Selecting a correlation structure

To determine which correlation structure was preferred, we used the
geepack::QIC function to obtain QIC scores for the g6i and g6a models
(Højsgaard et al. 2005).

# model comparison based on QIC
QIC(g6i, g6a)

The model with the ‘working independence’ (g6i) structure returned a lower
QIC compared to the model with the AR1 structure (g6a). Therefore, we
concluded that using the ‘working independence’ and estimating RSEs was
the better approach (Cui and Qian 2007).
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Table 9: GEE models fitted with the geeglm function with ’working independence’ (g6i) and AR1 (g6a)
correlation structures and corresponding QIC values. Covariates included are indicated with + symbol. Run
time (RT) given in minutes.

Model timeofd Julian sProp sLag sDur maxRLpp:sPres RT (mins) QIC
g6i + + + + + + 0.5* 778294
g6a + + + + + + 3.8* 778887

*Runtimes of MRSea models m1.1 and m1.6 need to be added (Table 7)

5.7.4 Forward model selection

Using forward model selection based on minimum QIC, we arrived at the full
model via the six model fitting rounds shown in Table 10.

Table 10: GEE models fitted with the geeglm function using the "working independence" correlation struc-
ture. Covariates included are indicated with + symbol. Bold QIC scores indicates best model continued
with in next round; bold model name indicates best model overall. Rounds are separated by horizontal lines.
Run time (RT) given in seconds.

Model timeofd Julian sProp sLag sDur maxRLpp:sPres RT (secs) QIC
g1.1 + 17 822210
g1.2 + 14 819745
g1.3 + 14 832922
g1.4 + 14 820239
g1.5 + 15 831243
g1.6 + 15 829186
g2.1 + + 18 806851
g2.2 + + 17 817810
g2.3 + + 18 800079
g2.4 + + 17 816249
g2.5 + + 17 814129
g3.1 + + + 22 786867
g3.2 + + + 20 798419
g3.3 + + + 20 796917
g3.4 + + + 21 794822
g4.1 + + + + 22 785615
g4.2 + + + + 22 783992
g4.3 + + + + 22 781842
g5.1 + + + + + 29 780682
g5.2 + + + + + 29 779488
g6 + + + + + + 30 778294

5.7.5 Backward model selection

Using backward model selection, we concluded that the full model was the
best fitting model (Table 11).
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Table 11: GEE models fitted with the geeglm function. Covariates included are indicated with + symbol.
Bold QIC score indicates best model continued with in next round; bold model name indicates best model
overall. Rounds separated by horizontal lines. Run time (RT) given in seconds.

Model timeofd Julian sProp sLag sDur maxRLpp:sPres RT (secs) QIC
m6 + + + + + + 30 778294

m5.1 + + + + + 26 791221
m5.2 + + + + + 28 798778
m5.3 + + + + + 29 779488
m5.4 + + + + + 26 797880
m5.5 + + + + + 33 780682
m5.6 + + + + + 27 783344

5.7.6 Best model

Both forward and backward model selection arrived at the full model as the
preferred model fitted with geeglm. Again, confidence intervals were wide,
in particular in regions of the covariates with few observations. In comparison
to the gamMRSea models, CIs were wider for the GEE approach for three
covariates, sProp, sDur and maxRLpp (compare partial fits in Figures 16 and
17).

Figure 17: Partial fits on the response scale with 95% CIs for the GEE model with the lowest QIC score.
Relative frequency of observations is indicated in turqouise.
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6 Discussion

Our case study has shown that correlation in consecutive observations can
be a major issue when analyzing PAM data with GAMs and dealing with it
appropriately is still an ongoing area of research. Similarly, choosing among
the available model selection methods for a given modeling approach can be
difficult. We aimed to give some guidance on this topic in section 4.3.
Analyses of our case study revealed that the preferred bam model had a
different covariate composition compared to the gamMRSea and geeglm
models. The best bam model only contained three covariates and the inter-
action term – timeofd, sLag, sDur and maxRLpp:sPres – while for the other
two methods (models fitted with gamMRSea and geeglm ) the best models
contained all six available covariates – including also Julian and sProp. This
discrepancy may have been due to the different correlation structure fitted
for bam models compared to the other two methods. An alternative reason
for the different covariate composition in the best bam model may have been
using GCV for model selection as opposed to 10-fold CV for gamMRSea or
QIC for the geeglm model. Whether this difference was due to the different
model selection criteria used for the three different approaches or to different
correlation structures could not be determined as part of this study.
We also found a discrepancy in the best model chosen by forward vs back-
ward selection using the gamMRSea method: the best model via backwards
selection was deemed better than the best model using forwards selection.
This highlights the importance of exploring the model space thoroughly. Ide-
ally all possible covariate combinations should be tested – as long as they
are plausible; however, this is generally too time consuming (six covariates
yield 64 combinations). Furthermore, the order in which the covariates enter
the model can be important. For the gamMRSea model using backwards
selection, terms entered the model in the order of their CV scores when fitted
in single covariate models. This was due to the fitting process with func-
tion runsalsa1D which sequentially finds the best knot locations for each
smooth term given the other covariates already in the model (factor and
linear terms as well as smooth terms for which this process was completed).
With few exceptions, confidence intervals were generally very wide in par-
tial fits for all modelling approaches. For bam models, CIs were particularly
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wide in comparison to the bandwidth of the smooth itself for the two covari-
ates with most observations at zero (sDur and maxRLpp:sPres, Figure 15).
For gamMRSea and geeglm models, the effects of all covariates were small
compared to the width of the CIs – with the exception of the maxRLpp:sPres
interaction (Figures 16, 17). These wide CIs were likely due to the high vari-
ability in beaked whale click counts per 1-min segments, an issue that might
be alleviated by using presence/absence of clicks in 1-min segments as the
response in binomial models (e.g. Solsona Berga et al. 2019).
Differences in the shape of smooths existed between the three modelling ap-
proaches which may have been due, in part, to differences in the maximum
number of knots (e.g. compare the smooths for timeofd for bam, gamMRSea
and geeglm, Figures 15, 16, 17). The covariate of interest, maxRLpp was
best modelled by gamMRSea where the partial fit for the interaction term
maxRLpp:sPres closely resembled the pattern shown in Figure 5, likely an
effect of the optimal knot locations determined with SALSA (Walker et al.
2010). A better result for bam models may have been achieved by allow-
ing more degrees of freedom when setting up the baseline functions for the
maxRLpp:sPres interaction.
In summary, each modelling approach has its benefits. Models fitted with
bam had the shortest run times; however, they were limited to fitting an
AR1 correlation structure. Models fitted with gamMRSea took longer to
fit; however, they allowed fitting RSE – which do not rely on specifying
the correlation structure correctly – and using SALSA. The geeglm models
allowed determining the best correlation structure. However, it is not very
user friendly when fitting complex smooth functions, such as cyclic smooths.
Which of these modeling approaches is the best to correctly identify the
presence (or absence) of an effect of a disturbance on the vocalization rate
given it had an effect (given it did not have an effect) could not be determined
during this study. This would require a simulation study.
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